Skip to main content
Version: Next

Adding Stateful Ingestion to a Source

Currently, datahub supports the Stale Metadata Removal and the Redunant Run Elimination use-cases on top of the more generic stateful ingestion capability available for the sources. This document describes how to add support for these two use-cases to new sources.

Adding Stale Metadata Removal to a Source

Adding the stale metadata removal use-case to a new source involves modifying the source config, source report, and the source itself.

For a full example of all changes required: Adding stale metadata removal to the MongoDB source.

The datahub.ingestion.source.state.stale_entity_removal_handler module provides the supporting infrastructure for all the steps described above and substantially simplifies the implementation on the source side. Below is a detailed explanation of each of these steps along with examples.

1. Modify the source config

The source's config must inherit from StatefulIngestionConfigBase, and should declare a field named stateful_ingestion of type Optional[StatefulStaleMetadataRemovalConfig].


from datahub.ingestion.source.state.stale_entity_removal_handler import (

class MySourceConfig(StatefulIngestionConfigBase):
# ...<other config params>...

stateful_ingestion: Optional[StatefulStaleMetadataRemovalConfig] = None

2. Modify the source report

The report class of the source should inherit from StaleEntityRemovalSourceReport instead of SourceReport.

from datahub.ingestion.source.state.stale_entity_removal_handler import (

class MySourceReport(StatefulIngestionReport):
# <other fields here>

3. Modify the source

  1. The source must inherit from StatefulIngestionSourceBase instead of Source.
  2. The source should contain a custom get_workunit_processors method.
from datahub.ingestion.source.state.stateful_ingestion_base import StatefulIngestionSourceBase
from datahub.ingestion.source.state.stale_entity_removal_handler import StaleEntityRemovalHandler

class MySource(StatefulIngestionSourceBase):
def __init__(self, config: MySourceConfig, ctx: PipelineContext):
super().__init__(config, ctx)

self.config = config = MySourceReport()

# other initialization code here

def get_workunit_processors(self) -> List[Optional[MetadataWorkUnitProcessor]]:
return [
self, self.config, self.ctx

# other methods here

Adding Redundant Run Elimination to a Source

This use-case applies to the sources that drive ingestion by querying logs over a specified duration via the config(such as snowflake usage, bigquery usage etc.). It typically involves expensive and long-running queries. To add redundant run elimination to a new source to prevent the expensive reruns for the same time range(potentially due to a user error or a scheduler malfunction), the following steps are required.

  1. Update the SourceConfig
  2. Update the SourceReport
  3. Modify the Source to
    1. Instantiate the RedundantRunSkipHandler object.
    2. Check if the current run should be skipped.
    3. Update the state for the current run(start & end times).

The datahub.ingestion.source.state.redundant_run_skip_handler modules provides the supporting infrastructure required for all the steps described above.

NOTE: The handler currently uses a simple state, the BaseUsageCheckpointState, across all sources it supports (unlike the StaleEntityRemovalHandler).

1. Modifying the SourceConfig

The SourceConfig must inherit from the StatefulRedundantRunSkipConfig class.


  1. Snowflake Usage
from datahub.ingestion.source.state.redundant_run_skip_handler import (
class SnowflakeStatefulIngestionConfig(StatefulRedundantRunSkipConfig):

2. Modifying the SourceReport

The SourceReport must inherit from the StatefulIngestionReport class. Examples:

  1. Snowflake Usage
class SnowflakeUsageReport(BaseSnowflakeReport, StatefulIngestionReport):
# <members specific to snowflake usage report>

3. Modifying the Source

The source must inherit from StatefulIngestionSourceBase.

3.1 Instantiate RedundantRunSkipHandler in the __init__ method of the source.

The source should instantiate an instance of the RedundantRunSkipHandler in its __init__ method. Examples: Snowflake Usage

from datahub.ingestion.source.state.redundant_run_skip_handler import (
class SnowflakeUsageSource(StatefulIngestionSourceBase):

def __init__(self, config: SnowflakeUsageConfig, ctx: PipelineContext):
super(SnowflakeUsageSource, self).__init__(config, ctx)
self.config: SnowflakeUsageConfig = config SnowflakeUsageReport = SnowflakeUsageReport()
# Create and register the stateful ingestion use-case handlers.
self.redundant_run_skip_handler = RedundantRunSkipHandler(

3.2 Checking if the current run should be skipped.

The sources can query if the current run should be skipped using should_skip_this_run method of RedundantRunSkipHandler. This should done from the get_workunits method, before doing any other work.

Example code:

def get_workunits(self) -> Iterable[MetadataWorkUnit]:
# Skip a redundant run
if self.redundant_run_skip_handler.should_skip_this_run(
# Generate the workunits.

3.3 Updating the state for the current run.

The source should use the update_state method of RedundantRunSkipHandler to update the current run's state if the run has not been skipped. This step can be performed in the get_workunits if the run has not been skipped.

Example code:

    def get_workunits(self) -> Iterable[MetadataWorkUnit]:
# Skip a redundant run
if self.redundant_run_skip_handler.should_skip_this_run(

# Generate the workunits.
# <code for generating the workunits>
# Update checkpoint state for this run.