Skip to main content
Version: 0.14.0

Dataset Transformers

The below table shows transformer which can transform aspects of entity Dataset.

Dataset AspectTransformer
status- Mark Dataset status
ownership- Simple Add Dataset ownership
- Pattern Add Dataset ownership
- Simple Remove Dataset Ownership
- Extract Ownership from Tags
- Clean suffix prefix from Ownership
globalTags- Simple Add Dataset globalTags
- Pattern Add Dataset globalTags
- Add Dataset globalTags
browsePaths- Set Dataset browsePath
glossaryTerms- Simple Add Dataset glossaryTerms
- Pattern Add Dataset glossaryTerms
- Tags to Term Mapping
schemaMetadata- Pattern Add Dataset Schema Field glossaryTerms
- Pattern Add Dataset Schema Field globalTags
datasetProperties- Simple Add Dataset datasetProperties
- Add Dataset datasetProperties
domains- Simple Add Dataset domains
- Pattern Add Dataset domains
- Domain Mapping Based on Tags
dataProduct- Simple Add Dataset dataProduct
- Pattern Add Dataset dataProduct
- Add Dataset dataProduct

Extract Ownership from Tags

Config Details

FieldRequiredTypeDefaultDescription
tag_patternstrRegex to use for tags to match against. Supports Regex to match a pattern which is used to remove content. Rest of string is considered owner ID for creating owner URN.
is_userbooltrueWhether should be consider a user or not. If false then considered a group.
tag_character_mappingdict[str, str]A mapping of tag character to datahub owner character. If provided, tag_pattern config should be matched against converted tag as per mapping
email_domainstrIf set then this is appended to create owner URN.
extract_owner_type_from_tag_patternstrfalseWhether to extract an owner type from provided tag pattern first group. If true, no need to provide owner_type and owner_type_urn config. For example: if provided tag pattern is (.*)_owner_email: and actual tag is developer_owner_email, then extracted owner type will be developer.
owner_typestrTECHNICAL_OWNEROwnership type.
owner_type_urnstrNoneSet to a custom ownership type's URN if using custom ownership.

Let’s suppose we’d like to add a dataset ownerships based on part of dataset tags. To do so, we can use the extract_ownership_from_tags transformer that’s included in the ingestion framework.

The config, which we’d append to our ingestion recipe YAML, would look like this:

transformers:
- type: "extract_ownership_from_tags"
config:
tag_pattern: "owner_email:"

So if we have input dataset tag like

  • urn:li:tag:owner_email:abc@email.com
  • urn:li:tag:owner_email:xyz@email.com

The portion of the tag after the matched tag pattern will be converted into an owner. Hence users abc@email.com and xyz@email.com will be added as owners.

Examples

  • Add owners, however owner should be considered as group and also email domain not provided in tag string. For example: from tag urn urn:li:tag:owner:abc extracted owner urn should be urn:li:corpGroup:abc@email.com then config would look like this:
    transformers:
    - type: "extract_ownership_from_tags"
    config:
    tag_pattern: "owner:"
    is_user: false
    email_domain: "email.com"
  • Add owners, however owner type and owner type urn wanted to provide externally. For example: from tag urn urn:li:tag:owner_email:abc@email.com owner type should be CUSTOM and owner type urn as "urn:li:ownershipType:data_product" then config would look like this:
    transformers:
    - type: "extract_ownership_from_tags"
    config:
    tag_pattern: "owner_email:"
    owner_type: "CUSTOM"
    owner_type_urn: "urn:li:ownershipType:data_product"
  • Add owners, however some tag characters needs to replace with some other characters before extracting owner. For example: from tag urn urn:li:tag:owner__email:abc--xyz-email_com extracted owner urn should be urn:li:corpGroup:abc.xyz@email.com then config would look like this:
    transformers:
    - type: "extract_ownership_from_tags"
    config:
    tag_pattern: "owner_email:"
    tag_character_mapping:
    "_": "."
    "-": "@"
    "--": "-"
    "__": "_"
  • Add owners, however owner type also need to extracted from tag pattern. For example: from tag urn urn:li:tag:data_producer_owner_email:abc@email.com extracted owner type should be data_producer then config would look like this:
    transformers:
    - type: "extract_ownership_from_tags"
    config:
    tag_pattern: "(.*)_owner_email:"
    extract_owner_type_from_tag_pattern: true

Clean suffix prefix from Ownership

Config Details

FieldRequiredTypeDefaultDescription
pattern_for_cleanuplist[string]List of suffix/prefix to remove from the Owner URN(s)

Matches against a Onwer URN and remove the matching part from the Owner URN

transformers:
- type: "pattern_cleanup_ownership"
config:
pattern_for_cleanup:
- "ABCDEF"
- (?<=_)(\w+)

Mark Dataset Status

Config Details

FieldRequiredTypeDefaultDescription
removedbooleanFlag to control visbility of dataset on UI.

If you would like to stop a dataset from appearing in the UI, then you need to mark the status of the dataset as removed.

You can use this transformer in your source recipe to mark status as removed.

transformers:
- type: "mark_dataset_status"
config:
removed: true

Simple Add Dataset ownership

Config Details

FieldRequiredTypeDefaultDescription
owner_urnslist[string]List of owner urns.
ownership_typestring"DATAOWNER"ownership type of the owners (either as enum or ownership type urn)
replace_existingbooleanfalseWhether to remove ownership from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

For transformer behaviour on replace_existing and semantics, please refer section Relationship Between replace_existing And semantics.


Let’s suppose we’d like to append a series of users who we know to own a dataset but aren't detected during normal ingestion. To do so, we can use the `simple_add_dataset_ownership` transformer that’s included in the ingestion framework.

The config, which we’d append to our ingestion recipe YAML, would look like this:

Below configuration will add listed owner_urns in ownership aspect

transformers:
- type: "simple_add_dataset_ownership"
config:
owner_urns:
- "urn:li:corpuser:username1"
- "urn:li:corpuser:username2"
- "urn:li:corpGroup:groupname"
ownership_type: "PRODUCER"

simple_add_dataset_ownership can be configured in below different way

  • Add owners, however replace existing owners sent by ingestion source
    transformers:
    - type: "simple_add_dataset_ownership"
    config:
    replace_existing: true # false is default behaviour
    owner_urns:
    - "urn:li:corpuser:username1"
    - "urn:li:corpuser:username2"
    - "urn:li:corpGroup:groupname"
    ownership_type: "urn:li:ownershipType:__system__producer"
  • Add owners, however overwrite the owners available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_ownership"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    owner_urns:
    - "urn:li:corpuser:username1"
    - "urn:li:corpuser:username2"
    - "urn:li:corpGroup:groupname"
    ownership_type: "urn:li:ownershipType:__system__producer"
  • Add owners, however keep the owners available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_ownership"
    config:
    semantics: PATCH
    owner_urns:
    - "urn:li:corpuser:username1"
    - "urn:li:corpuser:username2"
    - "urn:li:corpGroup:groupname"
    ownership_type: "PRODUCER"

Pattern Add Dataset ownership

Config Details

FieldRequiredTypeDefaultDescription
owner_patternmap[regx, list[urn]]entity urn with regular expression and list of owners urn apply to matching entity urn.
ownership_typestring"DATAOWNER"ownership type of the owners (either as enum or ownership type urn)
replace_existingbooleanfalseWhether to remove owners from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

let’s suppose we’d like to append a series of users who we know to own a different dataset from a data source but aren't detected during normal ingestion. To do so, we can use the pattern_add_dataset_ownership module that’s included in the ingestion framework. This will match the pattern to urn of the dataset and assign the respective owners.

The config, which we’d append to our ingestion recipe YAML, would look like this:

transformers:
- type: "pattern_add_dataset_ownership"
config:
owner_pattern:
rules:
".*example1.*": ["urn:li:corpuser:username1"]
".*example2.*": ["urn:li:corpuser:username2"]
ownership_type: "DEVELOPER"

pattern_add_dataset_ownership can be configured in below different way

  • Add owner, however replace existing owner sent by ingestion source
    transformers:
    - type: "pattern_add_dataset_ownership"
    config:
    replace_existing: true # false is default behaviour
    owner_pattern:
    rules:
    ".*example1.*": ["urn:li:corpuser:username1"]
    ".*example2.*": ["urn:li:corpuser:username2"]
    ownership_type: "urn:li:ownershipType:__system__producer"
  • Add owner, however overwrite the owners available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_ownership"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    owner_pattern:
    rules:
    ".*example1.*": ["urn:li:corpuser:username1"]
    ".*example2.*": ["urn:li:corpuser:username2"]
    ownership_type: "urn:li:ownershipType:__system__producer"
  • Add owner, however keep the owners available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_ownership"
    config:
    semantics: PATCH
    owner_pattern:
    rules:
    ".*example1.*": ["urn:li:corpuser:username1"]
    ".*example2.*": ["urn:li:corpuser:username2"]
    ownership_type: "PRODUCER"

Simple Remove Dataset ownership

If we wanted to clear existing owners sent by ingestion source we can use the simple_remove_dataset_ownership transformer which removes all owners sent by the ingestion source.

transformers:
- type: "simple_remove_dataset_ownership"
config: {}

The main use case of simple_remove_dataset_ownership is to remove incorrect owners present in the source. You can use it along with the Simple Add Dataset ownership to remove wrong owners and add the correct ones.

Note that whatever owners you send via simple_remove_dataset_ownership will overwrite the owners present in the UI.

Extract Dataset globalTags

Config Details

FieldRequiredTypeDefaultDescription
extract_tags_fromstringurnWhich field to extract tag from. Currently only urn is supported.
extract_tags_regexstring.*Regex to use to extract tag.
replace_existingbooleanfalseWhether to remove globalTags from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

Let’s suppose we’d like to add a dataset tags based on part of urn. To do so, we can use the extract_dataset_tags transformer that’s included in the ingestion framework.

The config, which we’d append to our ingestion recipe YAML, would look like this:

transformers:
- type: "extract_dataset_tags"
config:
extract_tags_from: "urn"
extract_tags_regex: ".([^._]*)_"

So if we have input URNs like

  • urn:li:dataset:(urn:li:dataPlatform:kafka,clusterid.USA-ops-team_table1,PROD)
  • urn:li:dataset:(urn:li:dataPlatform:kafka,clusterid.Canada-marketing_table1,PROD)

a tag called USA-ops-team and Canada-marketing will be added to them respectively. This is helpful in case you are using prefixes in your datasets to segregate different things. Now you can turn that segregation into a tag on your dataset in DataHub for further use.

Simple Add Dataset globalTags

Config Details

FieldRequiredTypeDefaultDescription
tag_urnslist[string]List of globalTags urn.
replace_existingbooleanfalseWhether to remove globalTags from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

Let’s suppose we’d like to add a set of dataset tags. To do so, we can use the simple_add_dataset_tags transformer that’s included in the ingestion framework.

The config, which we’d append to our ingestion recipe YAML, would look like this:

transformers:
- type: "simple_add_dataset_tags"
config:
tag_urns:
- "urn:li:tag:NeedsDocumentation"
- "urn:li:tag:Legacy"

simple_add_dataset_tags can be configured in below different way

  • Add tags, however replace existing tags sent by ingestion source
    transformers:
    - type: "simple_add_dataset_tags"
    config:
    replace_existing: true # false is default behaviour
    tag_urns:
    - "urn:li:tag:NeedsDocumentation"
    - "urn:li:tag:Legacy"
  • Add tags, however overwrite the tags available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_tags"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    tag_urns:
    - "urn:li:tag:NeedsDocumentation"
    - "urn:li:tag:Legacy"
  • Add tags, however keep the tags available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_tags"
    config:
    semantics: PATCH
    tag_urns:
    - "urn:li:tag:NeedsDocumentation"
    - "urn:li:tag:Legacy"

Pattern Add Dataset globalTags

Config Details

FieldRequiredTypeDefaultDescription
tag_patternmap[regx, list[urn]]Entity urn with regular expression and list of tags urn apply to matching entity urn.
replace_existingbooleanfalseWhether to remove globalTags from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

Let’s suppose we’d like to append a series of tags to specific datasets. To do so, we can use the pattern_add_dataset_tags module that’s included in the ingestion framework. This will match the regex pattern to urn of the dataset and assign the respective tags urns given in the array.

The config, which we’d append to our ingestion recipe YAML, would look like this:

transformers:
- type: "pattern_add_dataset_tags"
config:
tag_pattern:
rules:
".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"]
".*example2.*": ["urn:li:tag:NeedsDocumentation"]

pattern_add_dataset_tags can be configured in below different way

  • Add tags, however replace existing tags sent by ingestion source
    transformers:
    - type: "pattern_add_dataset_tags"
    config:
    replace_existing: true # false is default behaviour
    tag_pattern:
    rules:
    ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"]
    ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
  • Add tags, however overwrite the tags available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_tags"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    tag_pattern:
    rules:
    ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"]
    ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
  • Add tags, however keep the tags available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_tags"
    config:
    semantics: PATCH
    tag_pattern:
    rules:
    ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"]
    ".*example2.*": ["urn:li:tag:NeedsDocumentation"]

Add Dataset globalTags

Config Details

FieldRequiredTypeDefaultDescription
get_tags_to_addcallable[[str], list[TagAssociationClass]]A function which takes entity urn as input and return TagAssociationClass.
replace_existingbooleanfalseWhether to remove globalTags from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

If you'd like to add more complex logic for assigning tags, you can use the more generic add_dataset_tags transformer, which calls a user-provided function to determine the tags for each dataset.

transformers:
- type: "add_dataset_tags"
config:
get_tags_to_add: "<your_module>.<your_function>"

Then define your function to return a list of TagAssociationClass tags, for example:

import logging

import datahub.emitter.mce_builder as builder
from datahub.metadata.schema_classes import (
TagAssociationClass
)

def custom_tags(entity_urn: str) -> List[TagAssociationClass]:
"""Compute the tags to associate to a given dataset."""

tag_strings = []

### Add custom logic here
tag_strings.append('custom1')
tag_strings.append('custom2')

tag_strings = [builder.make_tag_urn(tag=n) for n in tag_strings]
tags = [TagAssociationClass(tag=tag) for tag in tag_strings]

logging.info(f"Tagging dataset {entity_urn} with {tag_strings}.")
return tags

Finally, you can install and use your custom transformer as shown here.

add_dataset_tags can be configured in below different way

  • Add tags, however replace existing tags sent by ingestion source
    transformers:
    - type: "add_dataset_tags"
    config:
    replace_existing: true # false is default behaviour
    get_tags_to_add: "<your_module>.<your_function>"
  • Add tags, however overwrite the tags available for the dataset on DataHub GMS
    transformers:
    - type: "add_dataset_tags"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    get_tags_to_add: "<your_module>.<your_function>"
  • Add tags, however keep the tags available for the dataset on DataHub GMS
    transformers:
    - type: "add_dataset_tags"
    config:
    semantics: PATCH
    get_tags_to_add: "<your_module>.<your_function>"

Set Dataset browsePath

Config Details

FieldRequiredTypeDefaultDescription
path_templateslist[string]List of path templates.
replace_existingbooleanfalseWhether to remove browsePath from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

If you would like to add to browse paths of dataset can use this transformer. There are 3 optional variables that you can use to get information from the dataset urn:

  • ENV: env passed (default: prod)
  • PLATFORM: mysql, postgres or different platform supported by datahub
  • DATASET_PARTS: slash separated parts of dataset name. e.g. database_name/schema_name/[table_name] for postgres

e.g. this can be used to create browse paths like /prod/postgres/superset/public/logs for table superset.public.logs in a postgres database

transformers:
- type: "set_dataset_browse_path"
config:
path_templates:
- /ENV/PLATFORM/DATASET_PARTS

If you don't want the environment but wanted to add something static in the browse path like the database instance name you can use this.

transformers:
- type: "set_dataset_browse_path"
config:
path_templates:
- /PLATFORM/marketing_db/DATASET_PARTS

It will create browse path like /mysql/marketing_db/sales/orders for a table sales.orders in mysql database instance.

You can use this to add multiple browse paths. Different people might know the same data assets by different names.

transformers:
- type: "set_dataset_browse_path"
config:
path_templates:
- /PLATFORM/marketing_db/DATASET_PARTS
- /data_warehouse/DATASET_PARTS

This will add 2 browse paths like /mysql/marketing_db/sales/orders and /data_warehouse/sales/orders for a table sales.orders in mysql database instance.

Default behaviour of the transform is to add new browse paths, you can optionally set replace_existing: True so the transform becomes a set operation instead of an append.

transformers:
- type: "set_dataset_browse_path"
config:
replace_existing: True
path_templates:
- /ENV/PLATFORM/DATASET_PARTS

In this case, the resulting dataset will have only 1 browse path, the one from the transform.

set_dataset_browse_path can be configured in below different way

  • Add browsePath, however replace existing browsePath sent by ingestion source
    transformers:
    - type: "set_dataset_browse_path"
    config:
    replace_existing: true # false is default behaviour
    path_templates:
    - /PLATFORM/marketing_db/DATASET_PARTS
  • Add browsePath, however overwrite the browsePath available for the dataset on DataHub GMS
    transformers:
    - type: "set_dataset_browse_path"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    path_templates:
    - /PLATFORM/marketing_db/DATASET_PARTS
  • Add browsePath, however keep the browsePath available for the dataset on DataHub GMS
    transformers:
    - type: "set_dataset_browse_path"
    config:
    semantics: PATCH
    path_templates:
    - /PLATFORM/marketing_db/DATASET_PARTS

Simple Add Dataset glossaryTerms

Config Details

FieldRequiredTypeDefaultDescription
term_urnslist[string]List of glossaryTerms urn.
replace_existingbooleanfalseWhether to remove glossaryTerms from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

We can use a similar convention to associate Glossary Terms to datasets. We can use the simple_add_dataset_terms transformer that’s included in the ingestion framework.

The config, which we’d append to our ingestion recipe YAML, would look like this:

transformers:
- type: "simple_add_dataset_terms"
config:
term_urns:
- "urn:li:glossaryTerm:Email"
- "urn:li:glossaryTerm:Address"

simple_add_dataset_terms can be configured in below different way

  • Add terms, however replace existing terms sent by ingestion source
    transformers:
    - type: "simple_add_dataset_terms"
    config:
    replace_existing: true # false is default behaviour
    term_urns:
    - "urn:li:glossaryTerm:Email"
    - "urn:li:glossaryTerm:Address"
  • Add terms, however overwrite the terms available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_terms"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    term_urns:
    - "urn:li:glossaryTerm:Email"
    - "urn:li:glossaryTerm:Address"
  • Add terms, however keep the terms available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_terms"
    config:
    semantics: PATCH
    term_urns:
    - "urn:li:glossaryTerm:Email"
    - "urn:li:glossaryTerm:Address"

Pattern Add Dataset glossaryTerms

Config Details

FieldRequiredTypeDefaultDescription
term_patternmap[regx, list[urn]]entity urn with regular expression and list of glossaryTerms urn apply to matching entity urn.
replace_existingbooleanfalseWhether to remove glossaryTerms from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

We can add glossary terms to datasets based on a regex filter.

transformers:
- type: "pattern_add_dataset_terms"
config:
term_pattern:
rules:
".*example1.*": ["urn:li:glossaryTerm:Email", "urn:li:glossaryTerm:Address"]
".*example2.*": ["urn:li:glossaryTerm:PostalCode"]

pattern_add_dataset_terms can be configured in below different way

  • Add terms, however replace existing terms sent by ingestion source

    transformers:
    - type: "pattern_add_dataset_terms"
    config:
    replace_existing: true # false is default behaviour
    term_pattern:
    rules:
    ".*example1.*": ["urn:li:glossaryTerm:Email", "urn:li:glossaryTerm:Address"]
    ".*example2.*": ["urn:li:glossaryTerm:PostalCode"]

  • Add terms, however overwrite the terms available for the dataset on DataHub GMS

    transformers:
    - type: "pattern_add_dataset_terms"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    term_pattern:
    rules:
    ".*example1.*": ["urn:li:glossaryTerm:Email", "urn:li:glossaryTerm:Address"]
    ".*example2.*": ["urn:li:glossaryTerm:PostalCode"]
  • Add terms, however keep the terms available for the dataset on DataHub GMS

    transformers:
    - type: "pattern_add_dataset_terms"
    config:
    semantics: PATCH
    term_pattern:
    rules:
    ".*example1.*": ["urn:li:glossaryTerm:Email", "urn:li:glossaryTerm:Address"]
    ".*example2.*": ["urn:li:glossaryTerm:PostalCode"]

Tags to Term Mapping

Config Details

FieldRequiredTypeDefaultDescription
tagsList[str]List of tag names based on which terms will be created and associated with the dataset.
semanticsenum"OVERWRITE"Determines whether to OVERWRITE or PATCH the terms associated with the dataset on DataHub GMS.

The tags_to_term transformer is designed to map specific tags to glossary terms within DataHub. It takes a configuration of tags that should be translated into corresponding glossary terms. This transformer can apply these mappings to any tags found either at the column level of a dataset or at the dataset top level.

When specifying tags in the configuration, use the tag's simple name rather than the full tag URN.

For example, instead of using the tag URN urn:li:tag:snowflakedb.snowflakeschema.tag_name:tag_value, you should specify just the tag name tag_name in the mapping configuration.

transformers:
- type: "tags_to_term"
config:
semantics: OVERWRITE # OVERWRITE is the default behavior
tags:
- "tag_name"

The tags_to_term transformer can be configured in the following ways:

  • Add terms based on tags, however overwrite the terms available for the dataset on DataHub GMS
    transformers:
- type: "tags_to_term"
config:
semantics: OVERWRITE # OVERWRITE is default behaviour
tags:
- "example1"
- "example2"
- "example3"
  • Add terms based on tags, however keep the terms available for the dataset on DataHub GMS
    transformers:
- type: "tags_to_term"
config:
semantics: PATCH
tags:
- "example1"
- "example2"
- "example3"

Pattern Add Dataset Schema Field glossaryTerms

Config Details

FieldRequiredTypeDefaultDescription
term_patternmap[regx, list[urn]]entity urn with regular expression and list of glossaryTerms urn apply to matching entity urn.
replace_existingbooleanfalseWhether to remove glossaryTerms from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

We can add glossary terms to schema fields based on a regex filter.

Note that only terms from the first matching pattern will be applied.

transformers:
- type: "pattern_add_dataset_schema_terms"
config:
term_pattern:
rules:
".*email.*": ["urn:li:glossaryTerm:Email"]
".*name.*": ["urn:li:glossaryTerm:Name"]

pattern_add_dataset_schema_terms can be configured in below different way

  • Add terms, however replace existing terms sent by ingestion source
    transformers:
    - type: "pattern_add_dataset_schema_terms"
    config:
    replace_existing: true # false is default behaviour
    term_pattern:
    rules:
    ".*email.*": ["urn:li:glossaryTerm:Email"]
    ".*name.*": ["urn:li:glossaryTerm:Name"]
  • Add terms, however overwrite the terms available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_schema_terms"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    term_pattern:
    rules:
    ".*email.*": ["urn:li:glossaryTerm:Email"]
    ".*name.*": ["urn:li:glossaryTerm:Name"]
  • Add terms, however keep the terms available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_schema_terms"
    config:
    semantics: PATCH
    term_pattern:
    rules:
    ".*email.*": ["urn:li:glossaryTerm:Email"]
    ".*name.*": ["urn:li:glossaryTerm:Name"]

Pattern Add Dataset Schema Field globalTags

Config Details

FieldRequiredTypeDefaultDescription
tag_patternmap[regx, list[urn]]entity urn with regular expression and list of tags urn apply to matching entity urn.
replace_existingbooleanfalseWhether to remove globalTags from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

We can also append a series of tags to specific schema fields. To do so, we can use the pattern_add_dataset_schema_tags transformer. This will match the regex pattern to each schema field path and assign the respective tags urns given in the array.

Note that the tags from the first matching pattern will be applied, not all matching patterns.

The config would look like this:

transformers:
- type: "pattern_add_dataset_schema_tags"
config:
tag_pattern:
rules:
".*email.*": ["urn:li:tag:Email"]
".*name.*": ["urn:li:tag:Name"]

pattern_add_dataset_schema_tags can be configured in below different way

  • Add tags, however replace existing tag sent by ingestion source
    transformers:
    - type: "pattern_add_dataset_schema_tags"
    config:
    replace_existing: true # false is default behaviour
    tag_pattern:
    rules:
    ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"]
    ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
  • Add tags, however overwrite the tags available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_schema_tags"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    tag_pattern:
    rules:
    ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"]
    ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
  • Add tags, however keep the tags available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_schema_tags"
    config:
    semantics: PATCH
    tag_pattern:
    rules:
    ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"]
    ".*example2.*": ["urn:li:tag:NeedsDocumentation"]

Simple Add Dataset datasetProperties

Config Details

FieldRequiredTypeDefaultDescription
propertiesdict[str, str]Map of key value pair.
replace_existingbooleanfalseWhether to remove datasetProperties from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

simple_add_dataset_properties transformer assigns the properties to dataset entity from the configuration. properties field is a dictionary of string values. Note in case of any key collision, the value in the config will overwrite the previous value.

transformers:
- type: "simple_add_dataset_properties"
config:
properties:
prop1: value1
prop2: value2

simple_add_dataset_properties can be configured in below different way

  • Add dataset-properties, however replace existing dataset-properties sent by ingestion source
    transformers:
    - type: "simple_add_dataset_properties"
    config:
    replace_existing: true # false is default behaviour
    properties:
    prop1: value1
    prop2: value2
  • Add dataset-properties, however overwrite the dataset-properties available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_properties"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    properties:
    prop1: value1
    prop2: value2
  • Add dataset-properties, however keep the dataset-properties available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_properties"
    config:
    semantics: PATCH
    properties:
    prop1: value1
    prop2: value2

Add Dataset datasetProperties

Config Details

FieldRequiredTypeDefaultDescription
add_properties_resolver_classType[AddDatasetPropertiesResolverBase]A class extends from AddDatasetPropertiesResolverBase
replace_existingbooleanfalseWhether to remove datasetProperties from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

If you'd like to add more complex logic for assigning properties, you can use the add_dataset_properties transformer, which calls a user-provided class (that extends from AddDatasetPropertiesResolverBase class) to determine the properties for each dataset.

The config, which we’d append to our ingestion recipe YAML, would look like this:

transformers:
- type: "add_dataset_properties"
config:
add_properties_resolver_class: "<your_module>.<your_class>"

Then define your class to return a list of custom properties, for example:

import logging
from typing import Dict
from datahub.ingestion.transformer.add_dataset_properties import AddDatasetPropertiesResolverBase

class MyPropertiesResolver(AddDatasetPropertiesResolverBase):
def get_properties_to_add(self, entity_urn: str) -> Dict[str, str]:
### Add custom logic here
properties= {'my_custom_property': 'property value'}
logging.info(f"Adding properties: {properties} to dataset: {entity_urn}.")
return properties

add_dataset_properties can be configured in below different way

  • Add dataset-properties, however replace existing dataset-properties sent by ingestion source

    transformers:
    - type: "add_dataset_properties"
    config:
    replace_existing: true # false is default behaviour
    add_properties_resolver_class: "<your_module>.<your_class>"

  • Add dataset-properties, however overwrite the dataset-properties available for the dataset on DataHub GMS

    transformers:
    - type: "add_dataset_properties"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    add_properties_resolver_class: "<your_module>.<your_class>"

  • Add dataset-properties, however keep the dataset-properties available for the dataset on DataHub GMS

    transformers:
    - type: "add_dataset_properties"
    config:
    semantics: PATCH
    add_properties_resolver_class: "<your_module>.<your_class>"

Replace ExternalUrl Dataset

Config Details

FieldRequiredTypeDefaultDescription
input_patternstringString or pattern to replace
replacementstringReplacement string

Matches the full/partial string in the externalUrl of the dataset properties and replace that with the replacement string

transformers:
- type: "replace_external_url"
config:
input_pattern: '\b\w*hub\b'
replacement: "sub"

Replace ExternalUrl Container

Config Details

FieldRequiredTypeDefaultDescription
input_patternstringString or pattern to replace
replacementstringReplacement string

Matches the full/partial string in the externalUrl of the container properties and replace that with the replacement string

transformers:
- type: "replace_external_url_container"
config:
input_pattern: '\b\w*hub\b'
replacement: "sub"

Clean User URN in DatasetUsageStatistics Aspect

Config Details

FieldRequiredTypeDefaultDescription
pattern_for_cleanuplist[string]List of suffix/prefix to remove from the Owner URN(s)

Matches against a User URN in DatasetUsageStatistics aspect and remove the matching part from it

transformers:
- type: "pattern_cleanup_dataset_usage_user"
config:
pattern_for_cleanup:
- "ABCDEF"
- (?<=_)(\w+)

Simple Add Dataset domains

Config Details

FieldRequiredTypeDefaultDescription
domainslist[union[urn, str]]List of simple domain name or domain urns.
replace_existingbooleanfalseWhether to remove domains from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

For transformer behaviour on replace_existing and semantics, please refer section Relationship Between replace_existing And semantics.


let’s suppose we’d like to add a series of domain to dataset, in this case you can use simple_add_dataset_domain transformer.

The config, which we’d append to our ingestion recipe YAML, would look like this:

Here we can set domains to either urn (i.e. urn:li:domain:engineering) or simple domain name (i.e. engineering) in both of the cases domain should be provisioned on DataHub GMS

transformers:
- type: "simple_add_dataset_domain"
config:
semantics: OVERWRITE
domains:
- urn:li:domain:engineering

simple_add_dataset_domain can be configured in below different way

  • Add domains, however replace existing domains sent by ingestion source
    transformers:
    - type: "simple_add_dataset_domain"
    config:
    replace_existing: true # false is default behaviour
    domains:
    - "urn:li:domain:engineering"
    - "urn:li:domain:hr"
  • Add domains, however overwrite the domains available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_domain"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    domains:
    - "urn:li:domain:engineering"
    - "urn:li:domain:hr"
  • Add domains, however keep the domains available for the dataset on DataHub GMS
    transformers:
    - type: "simple_add_dataset_domain"
    config:
    semantics: PATCH
    domains:
    - "urn:li:domain:engineering"
    - "urn:li:domain:hr"

Pattern Add Dataset domains

Config Details

FieldRequiredTypeDefaultDescription
domain_patternmap[regx, list[union[urn, str]]dataset urn with regular expression and list of simple domain name or domain urn need to be apply on matching dataset urn.
replace_existingbooleanfalseWhether to remove domains from entity sent by ingestion source.
semanticsenumOVERWRITEWhether to OVERWRITE or PATCH the entity present on DataHub GMS.

Let’s suppose we’d like to append a series of domain to specific datasets. To do so, we can use the pattern_add_dataset_domain transformer that’s included in the ingestion framework. This will match the regex pattern to urn of the dataset and assign the respective domain urns given in the array.

The config, which we’d append to our ingestion recipe YAML, would look like this: Here we can set domain list to either urn (i.e. urn:li:domain:hr) or simple domain name (i.e. hr) in both of the cases domain should be provisioned on DataHub GMS

transformers:
- type: "pattern_add_dataset_domain"
config:
semantics: OVERWRITE
domain_pattern:
rules:
'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.n.*': ["hr"]
'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.t.*': ["urn:li:domain:finance"]

pattern_add_dataset_domain can be configured in below different way

  • Add domains, however replace existing domains sent by ingestion source
    transformers:
    - type: "pattern_add_dataset_domain"
    config:
    replace_existing: true # false is default behaviour
    domain_pattern:
    rules:
    'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.n.*': ["hr"]
    'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.t.*': ["urn:li:domain:finance"]
  • Add domains, however overwrite the domains available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_domain"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    domain_pattern:
    rules:
    'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.n.*': ["hr"]
    'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.t.*': ["urn:li:domain:finance"]
  • Add domains, however keep the domains available for the dataset on DataHub GMS
    transformers:
    - type: "pattern_add_dataset_domain"
    config:
    semantics: PATCH
    domain_pattern:
    rules:
    'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.n.*': ["hr"]
    'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.t.*': ["urn:li:domain:finance"]

Domain Mapping Based on Tags

Config Details

FieldRequiredTypeDefaultDescription
domain_mappingDict[str, str]Dataset Entity tag as key and domain urn or name as value to map with dataset as asset.
semanticsenum"OVERWRITE"Whether to OVERWRITE or PATCH the entity present on DataHub GMS.

let’s suppose we’d like to add domain to dataset based on tag, in this case you can use domain_mapping_based_on_tags transformer.

The config, which we’d append to our ingestion recipe YAML, would look like this:

Here we can set domains to either urn (i.e. urn:li:domain:engineering) or simple domain name (i.e. engineering) in both of the cases domain should be provisioned on DataHub GMS

When specifying tags within the domain mapping, use the tag's simple name rather than the full tag URN.

For example, instead of using the tag URN urn:li:tag:NeedsDocumentation, you should specify just the simple tag name NeedsDocumentation in the domain mapping configuration

transformers:
- type: "domain_mapping_based_on_tags"
config:
domain_mapping:
'NeedsDocumentation': "urn:li:domain:documentation"

domain_mapping_based_on_tags can be configured in below different way

  • Add domains based on tags, however overwrite the domains available for the dataset on DataHub GMS
    transformers:
    - type: "domain_mapping_based_on_tags"
    config:
    semantics: OVERWRITE # OVERWRITE is default behaviour
    domain_mapping:
    'example1': "urn:li:domain:engineering"
    'example2': "urn:li:domain:hr"
  • Add domains based on tags, however keep the domains available for the dataset on DataHub GMS
    transformers:
    - type: "domain_mapping_based_on_tags"
    config:
    semantics: PATCH
    domain_mapping:
    'example1': "urn:li:domain:engineering"
    'example2': "urn:li:domain:hr"

Simple Add Dataset dataProduct

Config Details

FieldRequiredTypeDefaultDescription
dataset_to_data_product_urnsDict[str, str]Dataset Entity urn as key and dataproduct urn as value to create with dataset as asset.

Let’s suppose we’d like to add a set of dataproduct with specific datasets as its assets. To do so, we can use the simple_add_dataset_dataproduct transformer that’s included in the ingestion framework.

The config, which we’d append to our ingestion recipe YAML, would look like this:

transformers:
- type: "simple_add_dataset_dataproduct"
config:
dataset_to_data_product_urns:
"urn:li:dataset:(urn:li:dataPlatform:bigquery,example1,PROD)": "urn:li:dataProduct:first"
"urn:li:dataset:(urn:li:dataPlatform:bigquery,example2,PROD)": "urn:li:dataProduct:second"

Pattern Add Dataset dataProduct

Config Details

FieldRequiredTypeDefaultDescription
dataset_to_data_product_urns_patternmap[regx, urn]Dataset Entity urn with regular expression and dataproduct urn apply to matching entity urn.

Let’s suppose we’d like to append a series of dataproducts with specific datasets as its assets. To do so, we can use the pattern_add_dataset_dataproduct module that’s included in the ingestion framework. This will match the regex pattern to urn of the dataset and create the data product entity with given urn and matched datasets as its assets.

The config, which we’d append to our ingestion recipe YAML, would look like this:

transformers:
- type: "pattern_add_dataset_dataproduct"
config:
dataset_to_data_product_urns_pattern:
rules:
".*example1.*": "urn:li:dataProduct:first"
".*example2.*": "urn:li:dataProduct:second"

Add Dataset dataProduct

Config Details

FieldRequiredTypeDefaultDescription
get_data_product_to_addcallable[[str], Optional[str]]A function which takes dataset entity urn as input and return dataproduct urn to create.

If you'd like to add more complex logic for creating dataproducts, you can use the more generic add_dataset_dataproduct transformer, which calls a user-provided function to determine the dataproduct to create with specified datasets as its asset.

transformers:
- type: "add_dataset_dataproduct"
config:
get_data_product_to_add: "<your_module>.<your_function>"

Then define your function to return a dataproduct entity urn, for example:

import datahub.emitter.mce_builder as builder

def custom_dataproducts(entity_urn: str) -> Optional[str]:
"""Compute the dataproduct urn to a given dataset urn."""

dataset_to_data_product_map = {
builder.make_dataset_urn("bigquery", "example1"): "urn:li:dataProduct:first"
}
return dataset_to_data_product_map.get(dataset_urn)

Finally, you can install and use your custom transformer as shown here.

Relationship Between replace_existing and semantics

The transformer behaviour mentioned here is in context of simple_add_dataset_ownership, however it is applicable for all dataset transformers which are supporting replace_existing and semantics configuration attributes, for example simple_add_dataset_tags will add or remove tags as per behaviour mentioned in this section.

replace_existing controls whether to remove owners from currently executing ingestion pipeline.

semantics controls whether to overwrite or patch owners present on DataHub GMS server. These owners might be added from DataHub Portal.

if replace_existing is set to true and semantics is set to OVERWRITE then transformer takes below steps

  1. As replace_existing is set to true, remove the owners from input entity (i.e. dataset)
  2. Add owners mentioned in ingestion recipe to input entity
  3. As semantics is set to OVERWRITE no need to fetch owners present on DataHub GMS server for the input entity
  4. Return input entity

if replace_existing is set to true and semantics is set to PATCH then transformer takes below steps

  1. replace_existing is set to true, first remove the owners from input entity (i.e. dataset)
  2. Add owners mentioned in ingestion recipe to input entity
  3. As semantics is set to PATCH fetch owners for the input entity from DataHub GMS Server
  4. Add owners fetched from DataHub GMS Server to input entity
  5. Return input entity

if replace_existing is set to false and semantics is set to OVERWRITE then transformer takes below steps

  1. As replace_existing is set to false, keep the owners present in input entity as is
  2. Add owners mentioned in ingestion recipe to input entity
  3. As semantics is set to OVERWRITE no need to fetch owners from DataHub GMS Server for the input entity
  4. Return input entity

if replace_existing is set to false and semantics is set to PATCH then transformer takes below steps

  1. replace_existing is set to false, keep the owners present in input entity as is
  2. Add owners mentioned in ingestion recipe to input entity
  3. As semantics is set to PATCH fetch owners for the input entity from DataHub GMS Server
  4. Add owners fetched from DataHub GMS Server to input entity
  5. Return input entity

Writing a custom transformer from scratch

In the above couple of examples, we use classes that have already been implemented in the ingestion framework. However, it’s common for more advanced cases to pop up where custom code is required, for instance if you'd like to utilize conditional logic or rewrite properties. In such cases, we can add our own modules and define the arguments it takes as a custom transformer.

As an example, suppose we want to append a set of ownership fields to our metadata that are dependent upon an external source – for instance, an API endpoint or file – rather than a preset list like above. In this case, we can set a JSON file as an argument to our custom config, and our transformer will read this file and append the included ownership elements to all metadata events.

Our JSON file might look like the following:

[
"urn:li:corpuser:athos",
"urn:li:corpuser:porthos",
"urn:li:corpuser:aramis",
"urn:li:corpGroup:the_three_musketeers"
]

Defining a config

To get started, we’ll initiate an AddCustomOwnershipConfig class that inherits from datahub.configuration.common.ConfigModel. The sole parameter will be an owners_json which expects a path to a JSON file containing a list of owner URNs. This will go in a file called custom_transform_example.py.

from datahub.configuration.common import ConfigModel

class AddCustomOwnershipConfig(ConfigModel):
owners_json: str

Defining the transformer

Next, we’ll define the transformer itself, which must inherit from datahub.ingestion.api.transform.Transformer. The framework provides a helper class called datahub.ingestion.transformer.base_transformer.BaseTransformer that makes it super-simple to write transformers. First, let's get all our imports in:

# append these to the start of custom_transform_example.py
import json
from typing import List, Optional

from datahub.configuration.common import ConfigModel
from datahub.ingestion.api.common import PipelineContext
from datahub.ingestion.transformer.add_dataset_ownership import Semantics
from datahub.ingestion.transformer.base_transformer import (
BaseTransformer,
SingleAspectTransformer,
)
from datahub.metadata.schema_classes import (
OwnerClass,
OwnershipClass,
OwnershipTypeClass,
)

Next, let's define the base scaffolding for the class:

# append this to the end of custom_transform_example.py

class AddCustomOwnership(BaseTransformer, SingleAspectTransformer):
"""Transformer that adds owners to datasets according to a callback function."""

# context param to generate run metadata such as a run ID
ctx: PipelineContext
# as defined in the previous block
config: AddCustomOwnershipConfig

def __init__(self, config: AddCustomOwnershipConfig, ctx: PipelineContext):
super().__init__()
self.ctx = ctx
self.config = config

with open(self.config.owners_json, "r") as f:
raw_owner_urns = json.load(f)

self.owners = [
OwnerClass(owner=owner, type=OwnershipTypeClass.DATAOWNER)
for owner in raw_owner_urns
]

A transformer must have two functions: a create() function for initialization and a transform() function for executing the transformation. Transformers that extend BaseTransformer and SingleAspectTransformer can avoid having to implement the more complex transform function and just implement the transform_aspect function.

Let's begin by adding a create() method for parsing our configuration dictionary:

# add this as a function of AddCustomOwnership

@classmethod
def create(cls, config_dict: dict, ctx: PipelineContext) -> "AddCustomOwnership":
config = AddCustomOwnershipConfig.parse_obj(config_dict)
return cls(config, ctx)

Next we need to tell the helper classes which entity types and aspect we are interested in transforming. In this case, we want to only process dataset entities and transform the ownership aspect.

def entity_types(self) -> List[str]:
return ["dataset"]

def aspect_name(self) -> str:
return "ownership"

Finally we need to implement the transform_aspect() method that does the work of adding our custom ownership classes. This method will be called be the framework with an optional aspect value filled out if the upstream source produced a value for this aspect. The framework takes care of pre-processing both MCE-s and MCP-s so that the transform_aspect() function is only called one per entity. Our job is merely to inspect the incoming aspect (or absence) and produce a transformed value for this aspect. Returning None from this method will effectively suppress this aspect from being emitted.

# add this as a function of AddCustomOwnership

def transform_aspect( # type: ignore
self, entity_urn: str, aspect_name: str, aspect: Optional[OwnershipClass]
) -> Optional[OwnershipClass]:

owners_to_add = self.owners
assert aspect is None or isinstance(aspect, OwnershipClass)

if owners_to_add:
ownership = (
aspect
if aspect
else OwnershipClass(
owners=[],
)
)
ownership.owners.extend(owners_to_add)

return ownership

More Sophistication: Making calls to DataHub during Transformation

In some advanced cases, you might want to check with DataHub before performing a transformation. A good example for this might be retrieving the current set of owners of a dataset before providing the new set of owners during an ingestion process. To allow transformers to always be able to query the graph, the framework provides them access to the graph through the context object ctx. Connectivity to the graph is automatically instantiated anytime the pipeline uses a REST sink. In case you are using the Kafka sink, you can additionally provide access to the graph by configuring it in your pipeline.

Here is an example of a recipe that uses Kafka as the sink, but provides access to the graph by explicitly configuring the datahub_api.

source:
type: mysql
config:
# ..source configs

sink:
type: datahub-kafka
config:
connection:
bootstrap: localhost:9092
schema_registry_url: "http://localhost:8081"

datahub_api:
server: http://localhost:8080
# standard configs accepted by datahub rest client ...

Advanced Use-Case: Patching Owners

With the above capability, we can now build more powerful transformers that can check with the server-side state before issuing changes in metadata. e.g. Here is how the AddDatasetOwnership transformer can now support PATCH semantics by ensuring that it never deletes any owners that are stored on the server.

def transform_one(self, mce: MetadataChangeEventClass) -> MetadataChangeEventClass:
if not isinstance(mce.proposedSnapshot, DatasetSnapshotClass):
return mce
owners_to_add = self.config.get_owners_to_add(mce.proposedSnapshot)
if owners_to_add:
ownership = builder.get_or_add_aspect(
mce,
OwnershipClass(
owners=[],
),
)
ownership.owners.extend(owners_to_add)

if self.config.semantics == Semantics.PATCH:
assert self.ctx.graph
patch_ownership = AddDatasetOwnership.get_ownership_to_set(
self.ctx.graph, mce.proposedSnapshot.urn, ownership
)
builder.set_aspect(
mce, aspect=patch_ownership, aspect_type=OwnershipClass
)
return mce

Installing the package

Now that we've defined the transformer, we need to make it visible to DataHub. The easiest way to do this is to just place it in the same directory as your recipe, in which case the module name is the same as the file – in this case, custom_transform_example.

Advanced: Installing as a package and enable discoverability
Alternatively, create a `setup.py` in the same directory as our transform script to make it visible globally. After installing this package (e.g. with `python setup.py` or `pip install -e .`), our module will be installed and importable as `custom_transform_example`.
from setuptools import find_packages, setup

setup(
name="custom_transform_example",
version="1.0",
packages=find_packages(),
# if you don't already have DataHub installed, add it under install_requires
# install_requires=["acryl-datahub"],
entry_points={
"datahub.ingestion.transformer.plugins": [
"custom_transform_example_alias = custom_transform_example:AddCustomOwnership",
],
},
)

Additionally, declare the transformer under the entry_points variable of the setup script. This enables the transformer to be listed when running datahub check plugins, and sets up the transformer's shortened alias for use in recipes.

Running the transform

transformers:
- type: "custom_transform_example_alias"
config:
owners_json: "<path_to_owners_json>" # the JSON file mentioned at the start

After running datahub ingest -c <path_to_recipe>, our MCEs will now have the following owners appended:

"owners": [
{
"owner": "urn:li:corpuser:athos",
"type": "DATAOWNER",
"source": null
},
{
"owner": "urn:li:corpuser:porthos",
"type": "DATAOWNER",
"source": null
},
{
"owner": "urn:li:corpuser:aramis",
"type": "DATAOWNER",
"source": null
},
{
"owner": "urn:li:corpGroup:the_three_musketeers",
"type": "DATAOWNER",
"source": null
},
// ...and any additional owners
],

All the files for this tutorial may be found here.